
ABSTRACT

Title of Thesis: A COMPARATIVE RESEARCH BETWEEN THE
RELATION OF VARIOUS SATISFIABILITY
PROBLEMS AND COMPLEXITY CLASSES

Georgios Tsimos
Master of Science, 2019

Thesis directed by: Assistant Professor Eugenie Foustoucos

In this study we present a chronological comparison of multiple results, each

of which proves the Completeness of a Satisfiability problem for a corresponding

Complexity Class. We examine several important results that all seem to be the

result of using the notion of encoding the behavior of Turing Machines using Logic.

Via this idea, we give an alternative and to our best of knowledge novel proof for

one of these results, a proof that does not rely immediately on any prior result.

Specifically, we prove again that 2-SAT is NL-Complete and do so without reducing

it to any other NL-Complete problems. Besides this novel result, we survey the

proofs of several similar, already well-established results. We present Trakhtenbrot’s

Theorem, the NP-Completeness of 3-SAT and the PSPACE-Completeness of TQBF.

A comparison of the similarities and natural differences between the techniques

behind these results follows and some interesting conclusions and directions for

further analysis are being drawn.

A COMPARATIVE STUDY OF THE RELATIONSHIP BETWEEN
SATISFIABILITY PROBLEMS AND COMPLEXITY CLASSES

by

Georgios Tsimos

Thesis submitted to the Faculty of the Master’s Program of the
Athens University of Economics and Business in partial fulfillment

of the requirements for the degree of
Masters of Computer Science

2019

Advisory Committee:
Eugenie Foustoucos, Chair/Advisor
Evangelos Markakis
Iordanis Koutsopoulos

Acknowledgments

I would like to thank several people who helped me conclude this work.

First and foremost, I owe my gratitude to my advisor, Professor Eugenie Fous-

toucos for sacrificing a lot of her personal time in order to help me in my efforts of

understanding small, new parts of a vast field. She has given me the opportunity to

better understand how to properly conduct research and continuously encouraged

me to question and challenge my self, while at the same time she always remained

patient and helpful.

I would also like to thank Professor Evangelo Markaki and Professor Iordani

Koutsopoulo for agreeing to serve on my thesis committee and for using their time

resources for reading and understanding this work.

Many thanks are also due to all the members of the faculty of the Master’s

Program of Computer Science at AUEB, for their tremendous work and for the

opportunity they have given to all of us students to enrich our knowledge over so

many important fields of Computer Science.

A special thanks is due to my colleagues in the Program, since they have

made a very difficult year seem like it run by just in days. We managed to create a

great,tight nucleus of friends and colleagues and that is truly rare for a, seemingly,

random group of people.

Thank you all!

ii

Table of Contents

Table of Contents iii

List of Abbreviations iv

1 Basic Definitions 1
1.1 Introduction . 1
1.2 Logic . 2
1.3 Complexity Theory . 5
1.4 Outline of the Thesis . 8
1.5 Template . 10

2 Trakhtenbrot’s Theorem 11
2.1 Overview . 11
2.2 Proof of Theorem . 12

3 Satisfiability problems Complete for the Classes NP and PSPACE 15
3.1 Overview . 15
3.2 Cook-Levin Theorem . 15
3.3 TQBF is PSPACE-Complete . 19

4 2-SAT is Complete for the class NL 23
4.1 Overview . 23
4.2 A new Proof of Theorem . 24

5 Observations, Relevant Results and Further Work 32
5.1 Comparison of the several proofs . 32

5.1.1 General observations regarding the proofs 32
5.1.2 Comparing the proofs of theorems 2.2.1 and 3.2.1 33
5.1.3 Comparing the proofs of theorems 3.2.1 and 4.2.1 34
5.1.4 A fitting cross-observation . 35

5.2 Relevant Results . 36
5.3 Future Work . 37

Bibliography 39

iii

List of Abbreviations

CNF Conjunctive Normal Form

FO First Order logic

L Linear space complexity class

NL Nondeterministic Linear space complexity class
NP Nondeterministic Polynomial time complexity class

P Polynomial time complexity class
PSPACE Polynomial SPACE complexity class

SAT SATisfiability of formula problem
SO Second Order logic

TM Turing Machine
TQBF Totally Quantified Boolean Formula satisfiability problem

iv

Chapter 1: Basic Definitions

1.1 Introduction

The studies of Complexity Theory have been of great importance through the

last six decades. However, while the core of this Theory has been thoroughly re-

searched, various questions remain unanswered. During the efforts for unearthing

the most celebrated results, researchers have tried different approaches. One of

the most promising of them -after it was initially presented by Ronald Fagin in his

Ph.D. Thesis [1] is the field of Descriptive Complexity, where each Complexity Class

is equivalently defined by the type of logic required for the Languages in the Class

to be expressed.

Fagin’s work, however, wasn’t the first instance in which the idea of encoding Turing

Machines using Logic has been deployed. In fact, through out the years, this notion

has been central to several results regarding Complexity Theory.

In the present work, we examine several important results that have occurred

by use of this notion, of encoding the behavior of Turing Machines using Logic. We

use this notion to give an alternative proof for a Completeness result regarding a

well-known problem, i.e. that 2-SAT is NL-Complete. Our proof differs from the

1

existing proof, which uses a logarithmic-space reduction from an already established

NL-Complete problem, the Reachability problem. Instead, we prove the result by

constructing a method of reducing the decidability of any problem in NL to the

satisfiability of a 2-CNF, Boolean formula.

Through this procedure, we give another valid example of a Complexity Class in

which a specific problem of Logic is Complete for the Class.

We compare the several proofs and try to understand the common traits behind all

these results. At the same time, we use this opportunity in order to better under-

stand some other fundamental results of Descriptive and Computational Complexity

that relevant to our work.

1.2 Logic

We now briefly review some standard definitions from mathematical logic. For

further readings regarding Logic, Enderton’s [2] is a Classic textbook.

Definition 1.2.1. A vocabulary σ is a collection of constant symbols (c1, c2, . . . , cn, . . .),

relation symbols or predicates (R1, R2, . . . , Rn, . . .) and function symbols (f1, f2, . . . , fn, . . .).

Every predicate and every function symbol has an associated arity, which corre-

sponds to the dimension of its domain.

A σ-structure or model U =
(
A, {cUi }, {RUi }, {fUi }

)
consists of a universe A

and an interpretation of each ci, Ri, fi from σ as cUi ∈ A, RUi ⊆ Ak, fUi : Al → A,

respectively.

A structure U is called finite if its universe A is a finite set. Vocabularies that

2

contain only relation symbols and constants are called relational vocabularies.

Throughout this work, we assume that every vocabulary is finite and relational.

If σ is a relational vocabulary, then STRUCT[σ] denotes the Class of all finite σ-

structures.

Definition 1.2.2. We assume a countably infinite set of variables. Variables will

be typically denoted by x, y, z, . . ., with subscripts and superscripts. We inductively

define terms and formulae of the first-order predicate calculus over vocabulary σ as

follows:

• Each variable x is a term.

• Each constant symbol c is a term.

• If t1, . . . , tk are terms and f is a k-ary function symbol, then f(t1, . . . , tk) is a

term.

• If t1, t2 are terms, then t1 = t2 is an atomic formula.

• If t1, . . . , tk are terms and R is a k-ary relation symbol, then R(t1, . . . , tk) is

an atomic formula.

• If φ1, φ2 are formulae, then φ1 ∧ φ2, φ1 ∨ φ2, and ¬φ1 are formulae.

(We keep both ∧,∨, although one suffices, so as to be able to use the notion

of CNF. However, we omit →,↔, since they can be expressed by use of the

other connectives.)

• If φ is a formula, then ∃xφ and ∀xφ are formulae.

3

If we only use Propositional (i.e. Boolean) variables and the Boolean connec-

tives ∨,∧,¬, then the resulting formulae are Boolean formulae.

A Boolean formula is in k-CNF (Conjunctive Normal Form), if it contains only

conjunctions(∧) of clauses, each of which is a disjunction(∨) of k or less Boolean

literals(variables and their negations). A Boolean formula is satisfiable if there

exists a satisfying assignment for its variables, i.e. if there exists an allocation of

TRUE-FALSE between its variables, such that the complete formula is TRUE.

If we extend the Propositional Logic in a way such that Boolean variables

accept quantification (∀, ∃) over a Boolean formula, then the resulting formula is a

Quantified Boolean formula (QBF).

Note however that the resulting Logic is an extended version of the definition of

Propositional Logic. A Quantified Boolean formula where every variable is quanti-

fied is called a sentence (or fully Quantified Boolean Formula) and is either true

or false. This might not be straightforward in first sight, so we will clarify it with

an example.

Suppose we have a formula of the form: (x1 ∨ x2) ∧ (x2 ∨ ¬x3). This is a Boolean

formula. If we use quantification, then we are no longer in Propositional Logic.

Instead, we will have a Quantified Boolean formula over the extended (quantified)

definition of Propositional Logic. Suppose we have a new formula:

∀x1∃x2∀x3(x1∨x2)∧(x2∨¬x3). This formula is a fully Quantified Boolean Formula.

This formula suggests that for any value we give to x1 (True or False), there must

exist a value we can give to x2 such that for any value we give to x3 (True or False),

the initial formula is satisfied.

4

The above sentence however is a statement, that will always be either True or False,

and since it is logically encoded by our latest formula, we define such formulas as

sentences and they are always either True or False. For example, the above sentence

is always True, since if we set x2 to be true, both clauses of the initial formula are

satisfied independently of the values of x1 and x3.

1.3 Complexity Theory

Definition 1.3.1. A Turing Machine (T.M.) say M, is a tuple (Q,Σ,∆, δ, q0, Qa, Qr),

such that:

• Q is a finite set of states.

• Σ is the finite input alphabet.

• ∆ is the finite tape alphabet; it contains Σ and a specific blank symbol t.

• δ : Q×∆→ 2Q×∆×{left,right}is the transition function.

• q0 ∈ Q is the initial state of M.

• Qa, Qr ⊆ Q s.t. Qa ∩ Qr = ∅ are the set of accepting and rejecting states of

the machine respectively. They are all halting states for the machine.

.

A T.M. is called deterministic if δ is actually a function Q×∆→ Q×∆×

{left, right}. In any other case, the machine is non-deterministic.

A T.M. might have one or more tapes. In general we can assume that any T.M.

5

has one tape and one head. When otherwise (as it will be the case for problems

in NL) we will specifically explain so. No matter what, a T.M. with one tape is

asymptotically as expressible as any T.M. with a finite amount of tapes.

A configuration of a T.M. encodes an instance of the machine at a given

time while running on a specific input. It specifies the contents of the tape, the

state, and the position of the head as follows.

Let the tape contain the word w = w1, w2, ..., wn, where wi ∈ ∆ is the sym-

bol in the ith position of the word and consequently, the tape. Assume that the

head is in position j. If the T.M. is in state q, we denote this configuration by

|q|j|w1|w2| . . . |wn|. A configuration C2 = (q2, h2, w2) immediately follows another

configuration C1 = (q1, h1, w1) iff (q2, w
h1
2 , h2) ∈ δ(q1, w

h1
1). A configuration Ci is an

accepting configuration if qi ∈ Qa.

We will now remind the definitions of the several Complexity Classes we are

going to encounter throughout the remaining chapters.

Definition 1.3.2. L is the Class of Languages decidable in logarithmic space on a

two-tape, deterministic T.M. , or else, L= SPACE(log n).

NL is the Class of Languages decidable in logarithmic space on a two-tape, non-

deterministic T.M. , or else, NL= NSPACE(log n)

Definition 1.3.3. P is the Class of Languages decidable in polynomial time on a

6

single-tape, deterministic T.M. , or else, P=
⋃
k TIME(nk).

Definition 1.3.4. A verifier for a Language A is an algorithm V, where

A = {w|V accepts (w, c), for some string c}.

The time Complexity of a verifier takes into consideration only the size of w.

A Language A is polynomially verifiable if it has a polynomial verifier.

Definition 1.3.5. NP is the Class of polynomially verifiable Languages ,or else,

NP=
⋃
k NTIME(nk).

Definition 1.3.6. PSPACE is the Class of Languages decidable in polynomial space

on a singe-tape, deterministic T.M. , or else, PSPACE=
⋃
k SPACE(nk)

Definition 1.3.7. Consider a logarithmic-space T.M. with three tapes: one read-

only input tape, one read/write work tape and one write-only output tape, where

the work tape must contain at most O(log n) symbols. Such a T.M. computes a

function f : ∆∗ → ∆∗.

Then, Language A is logarithmic-space reducible to Language B (A ≤log B) if

A is a mapping reducible to B by use of a logarithmic-space computable function f,

computed by a T.M. as the above.

Definition 1.3.8. Consider a polynomial-time T.M. that computes a function f :

∆∗ → ∆∗.

Then, Language A is polynomial-time reducible to Language B (A ≤p B) if

A is a mapping reducible to B by use of a polynomial-time computable function f,

computed by a T.M. as the above.

7

Definition 1.3.9. Problem A is C-Hard for a Complexity Class C if A is at least

as hard as any problem in C, or else, every problem in C is appropriately reduced

to A. Problem A is C-Complete for a Complexity Class C, if A is in C and A is

C-Hard.

We consider the readers to be familiar with the Big-Oh notation. For most part

of this work, we will use the theoretical definitions of Complexity Classes, following

mostly the definitions of [3]. However, most cases of asymptotic, Big-Oh complexity

have an immediate correspondence to some Complexity Class. Specifically, the

Complexity Class of time TIME(t(n)) is the set of languages decidable from a

deterministic T.M. of asymptotic running time O(t(n)).

With all these in mind, we are ready to proceed with the several proofs and results.

1.4 Outline of the Thesis

In Chap. 2, we present Trakhtenbrot’s Theorem, since it is the first theo-

rem which integrates the important notion, namely that one can prove equivalence

between the (un)satisfiability of a type of logical sentences and the halting (or ac-

ceptance/rejection) of a Turing Machine. We show the alternative proof presented

in [4], since it gives a better example of a more general method for proving the

equivalence between T.M.s and logical sentences(formulas).

In Chap. 3, we continue by giving the proofs of the Cook-Levin Theorem,

stating that SAT is NP-Complete and of the theorem which states that TQBF

is PSPACE-Complete. These two proofs are presented in the same chapter since

8

during the time we were trying to extract their “essence”, we came to the conclusion

that they shared many similar notions. Thus, it seems better in order to understand

the techniques used in the proofs, as well as their results, it is preferable to study

both of them together.

In Chap. 4, we present our result. We follow Chap. 2 and 3 by using similar

ideas and building upon prior knowledge for proving that 2-SAT is NL-Complete.

This result is known and the existing proof uses a log-space reduction of the problem

2-SAT from another, already known NL-Complete problem. Here, we present a

different and novel (to the best of our knowledge) proof. Our proof uses properties

inherent to the problems in the Class of NL and by explaining a way to reduce any

such problem to an appropriate 2-CNF Boolean formula. To conclude the proof,

we make use of the Immerman-Szelepcsényi Theorem, which will later be further

discussed. Our proof is simpler, in the sense that it is a direct proof that does not

assume previous knowledge of some other NL-complete problem.

In Chap. 5, we explain their similarities and differences between the proofs of

all previous four results. We show that all four proofs share some common traits

despite the fact that the first one corresponds to an unsatisfiability problem for sen-

tences of FO while the latter three correspond to satisfiability problems of Boolean

formulas. We present some other, important Theorems and interesting, relevant

topics. We present our general observations derived from this work regarding all the

discussed topics as well as some ideas for future work.

9

1.5 Template

This work has been written in LATEX by using the open template provided by

the University of Maryland, College Park.

10

Chapter 2: Trakhtenbrot’s Theorem

2.1 Overview

The importance of this theorem lies in many aspects.

The theorem proves that Completeness fails over finite models, giving the negative

result that fueled novel results over the ways to prove the definability of queries over

finite structures. An example of such a way are the Ehrenfeucht -Fräıssé Games, to

which topic my work in my Bachelor’s Thesis is related.

At the same time, this result was chronologically the first that deployed the idea

of expressing a T.M. as an equivalent logic formula and relating the halting of the

machine with the satisfiability of the formula. This same idea deployed for different

problems offered great results later on, some of which we will explore in the current

work.

Even the Theorem that introduced the field of Descriptive Complexity, (Fagin’s

Theorem in [1]) follows an idea and proof close to that of Trakhtenbrot’s Theorem,

specified for the class NP.

11

2.2 Proof of Theorem

Lets now prove Trakhtenbrot’s Theorem, following the Proof in [4]. The The-

orem states:

Theorem 2.2.1. For every relational vocabulary σ with at least one binary relation

symbol, it is undecidable whether a sentence Φ of vocabulary σ is finitely satisfiable.

Proof. Let M = (Q,Σ,∆, δ, q0, Qa, Qr) be a deterministic T.M. .

Since we are coding the problem of halting on the empty input, we can assume

without loss of generality that ∆ = 0, 1, with 0 playing the role of the blank symbol.

We define a vocabulary σ so that its structures represent computations of M .

More precisely, σ = {<,min, T0(·, ·), T1(·, ·), (Hq(·, ·)) for q ∈ Q}. Relation < is a

linear order, while min is a constant symbol for the minimal element with respect

to < 1 . T0 and T1 are tape predicates; Ti(p, t) indicates that position p at time t

writes i, for i = 0, 1. Hq’s are head predicates; Hq(p, t) expresses that at time t, M

is in state q, and the tape’s head is in position p.

We will define ΦM to be the conjunction of specific sentences.

The first sentence will be expressing that < is a linear order and min is its

minimal element.

The next sentence will be expressing the initial configuration of M . Thus, it must

state that M is in state q0, the head is in the starting position for the starting time

1Therefore, the finite universe can be associated with an initial segment of natural numbers.

12

moment and the tape contains 0’s(blank):

Hq0(min,min) ∧ (∀pT0(p,min))

Another sentence must state that at any time the machine is in exactly one state:

∀t
(
∃p
(∨
q∈Q

Hq(p, t)
)
∧ ¬∃p

(∨
q,q′∈Q,q 6=q′

Hq(p, t) ∧Hq′(p, t)
))

A set of sentences must also express the well-functioning of M . This set depends on

the machine and its transition relation δ. We can give an example of such a sentence.

Let δ(qa, 1, qb, 1, r), which means that if M is in state qa and if the current position

of the tape head contains 1, then M proceeds to state qb, writes in the current

position 1 and moves the head one position to the right. This will be expressed as

the following sentence:

∀p∀t
(
Hqa(p, t) ∧ T1(p, t)

)
→(

Hqb(p+ 1, t+ 1) ∧ T1(p, t+ 1) ∧ ∀p′ 6= p
(∧

k=0,1 Tk(p
′, t)↔ Tk(p

′, t+ 1)
))

Another sentence must be expressing that in every configuration of M , each cell of

the tape contains exactly one element of the tape alphabet ∆ :

∀p∀t
(
T0(p, t)↔ ¬T1(p, t)

)

13

Finally, there must exist a sentence which will imply that M halts:

∃p∃t
∨

q∈Qa

⋃
Qr

Hq(p, t)

The conjunction of all the above sentences produces ΦM . What these sentences

together express must be clear by now. ΦM states that <,min, Tk’s, and Hq’s

are interpreted as indicated above, and that the machine eventually halts. If the

machine halts, then Hq(p, t) is true for some p, t, and q ∈ Qa
⋃
Qr, and after that

the configuration of the machine does not change, so it can be omitted. Due to

this, all the configurations of a halting computation can be represented by a finite

σ-structure. If ΦM has a finite model, then (by definition) this model defines a

halting, valid computation of M on empty input. Reversely, if M halts on empty

input, then the set of all the configurations that M follows in order to halt coded

as these relations stated above create a finite model of ΦM . Therefore, M halts on

empty input iff ΦM has a finite model. However, the Halting problem is undecidable

and thus the problem of finite satisfiability for ΦM is also undecidable.

14

Chapter 3: Satisfiability problems Complete for the Classes NP and

PSPACE

3.1 Overview

To better understand the importance of the method of expressing Turing Ma-

chines with equivalent logical formulas, we will view this through a different angle.

In this Chapter, we will present two distinct and very important results, both of

which became possible by showing that the Turing Machine for any problem of each

class is accepting any input if and only if a respective Boolean formula (or sen-

tence) produced given the specific input is satisfiable. The first such result is the

well-known Cook-Levin Theorem which proved that SAT is NP-Complete.

3.2 Cook-Levin Theorem

In this part, we will reproduce the proof for the classical Theorem of Cook

and Levin, following the proof presented in [3].

Theorem 3.2.1. The Boolean satisfiability problem (SAT) is Complete for the

Complexity Class NP.

Proof. Theorem 3.2.1 specifically states that SAT is NP-Complete, which, as any

15

Completeness Theorem for a Complexity class, requires two different statements to

be proven. First we need to prove that SAT is in NP. Then, we ought to prove that

SAT is NP-Hard.

To prove that SAT is in NP is rather straightforward. Let φ be a Boolean formula.

Then a non-deterministic Turing Machine Mφ can non-deterministically produce

every assignment of all variables of φ in polynomial time regarding the number of

variables in φ. The formula is satisfiable if at least one such assignment satisfies it.

Now let’s prove that any language, say L, in NP can be polynomially reduced

to the satisfiability problem of a Boolean formula.

Let ML be the non-deterministic, polynomial-time T.M. that decides L and

let w be an input to ML. Then, we build a Boolean formula φML,w that will encode

the accepting computation path of ML for input w.

The construction of φML,w shall follow the same ideas shown in Theorem 2.2.1,

modified to create a Boolean formula, instead of an FO sentence.
First, we present the notion of a configuration table (or else tableau) for

ML. Since ML is a non-deterministic, polynomial time T.M. its tableau will be
an O(poly(n))×O(poly(n)) table, where each row will be a configuration of a com-
putation branch of ML for input w, as depicted in figure 3.1.

We can assume for practical reasons that no branch of ML surpasses a time threshold

of nk for some k, so each tableau will be an nk × nk table. So, each i,j cell of

a tableau contains the j-th element in the tape for the i-th configuration of this

specific computational branch.

Therefore, ML accepts input w iff there exists an accepting tableau, i.e. a tableau

16

Figure 3.1: The typical representation of a tableau for a computation path of a
non-deterministic polynomial-time T.M.

corresponding to an accepting computational branch. For each cell i,j and each

symbol s of A = Q
⋃

∆ (State and Tape Alphabet sets), we shall have an according

variable xi,j,s, which will be 1 only if the ith configuration of the machine contains

symbol s in its jth position.

We will encode such a tableau’s properties into φML,w.

φML,w will be the conjunction of several formulas. First, we will need a formula

stating that the initial configuration must be valid:

φstart = x1,1,start ∧ x1,2,q0 ∧ x1,3,l1 ∧ . . . ∧ x1,n+2,ln ∧ x1,n+3,t ∧ . . . ∧ x1,nk,t

Then, we will need a formula that will express that every cell contains exactly one

17

valid symbol:

φcell =
∧

i,j∈{1,2,...,nk}

((∨
s∈A

xi,j,s
)
∧ ¬

(∨
s 6=t∈A

xi,j,s ∧ xi,j,t
))

We will also need a formula that will express that each row of the tableau follows

the previous in a way compatible to the machine’s transition function. This can

be efficiently checked, by viewing that each 2 × 3 window follows the rules of the

transition function. For the proof, in [3] it is proven as a claim that if the top row

of the table is the initial configuration and every window in the table is valid, then

each configuration correctly follows the previous. From the machine’s transition

function, we can produce all instances of valid 2 × 3 windows as ordered sets of 6

symbols. Let V be the set of such valid windows, expressed as mentioned. Then,

this formula will be as follows:

φtransit =
∨

{c1,1,...,c2,3}∈V

(
xi,j−1,c1,1∧xi,j,c1,2∧xi,j+1,c1,3∧xi+1,j−1,c2,1∧xi+1,j,c2,2∧xi+1,j+1,c2,3

)

Finally, we will need a formula that will state that the tableau contains an accepting

configuration:

φaccept =
∨

i,j∈{1,2,...,nk}
xi,j,qa

Then, φML,w will be the conjunction of all the above formulas. We will first

show that the reduction is of polynomial complexity. We examine the size of φML,w.

First of all, φML,w contains a number of variables of O(n2k). This holds since the

tableau has n2k cells and for each cell we use |A| = |Q⋃∆| variables, which is a

18

constant regarding ML.

In addition, each formula we already described is of polynomial size.

Formula φstart is created only for the first row and contains some information about

each cell of the first row, so is of size O(nk).

Formulas φcell, φtransit and φaccept contain information for each cell of the tableau,

so they are of length O(n2k).

Therefore, the complete formula φML,w is of size O(n2k), which is polynomial in

n. Because of that, we can produce φML,w in polynomial time using a repetitive

procedure which can be well-defined.

The last part of the proof is to prove that φML,w is satisfiable if and only if ML

accepts w. This is trivially proven, since φML,w always expresses a tableau of ML on

input w. Thus, if ML accepts w, then there exists an accepting computation path

and by definition, this path’s tableau would give the guidelines as to the satisfying

assignment for φML,w.

Reversely, if φML,w is satisfiable, then the tableau that φML,w expresses will be a

tableau that corresponds to an accepting computation path, so ML accepts w and

the proof is complete.

3.3 TQBF is PSPACE-Complete

As we have previously stated, the TQBF Problem (True fully Quantified

Boolean Formula) is the problem of determining whether a fully quantified Boolean

formula (i.e. a Boolean sentence) is true or false.

19

Theorem 3.3.1. The True fully Quantified Boolean Formula problem (TQBF) is

Complete for the Complexity Class PSPACE.

Proof. We will now present the proof that this problem is in fact PSPACE-Complete.

We will follow the proof given in [3]. In order to do so, we will construct a proof

different but similar to this of Theorem 3.2.1 that we previously proved. We first

prove that TQBF is in PSPACE. This we can do by giving an algorithmic procedure

that uses polynomial space in order to decide the TQBF problem.

Given as input a sentence φ, the procedure does one of the following:

1. If φ doesn’t has any quantification, then it only contains constants. Therefore,

it evaluates its value and accepts if it is true or reject if it is false.

2. If φ = ∃xψ, then the procedure is recursively repeated for ψ but where pre-

viously there was x, now it is substituted once with 0 and once with 1. If at

least one of the times we get accepting results, then we accept, else we reject.

3. If φ = ∀xψ, then the procedure is recursively repeated for ψ but where previ-

ously there was x, now it is substituted once with 0 and once with 1. If both

of the times we get accepting results, then we accept, else we reject.

The above procedure decides TQBF in polynomial space. This occurs because

the recursion depth is at most as much as the number of variables in the initial

sentence.

Now we will prove that TQBF is PSPACE-Hard. Let a language Λ ∈ PSPACE.,

decided by a T.M.MΛ in space at most nk for some constant k. We will reduceMΛ on

20

input w to a Boolean sentence φMΛ,w, such that φMΛ,w is satisfiable iff MΛ accepts w.

We consider two collections of variables, let c1 and c2 such that each corre-

sponds to a configuration of MΛ on input w and we also consider a number t > 0.

Then, we construct a Boolean formula φc1,c2,t, such that it is true iff MΛ can go from

configuration c1 to configuration c2 in less that t steps.

If we can correctly build such formulas, then we have φMΛ,w be the formula φcstart,ca,T ,

where cstart is the initial configuration of the machine, ca is an accepting configura-

tion and T is a time interval such that M never uses more time than T (e.g. T is

2O(nk) and we will w.l.o.g. we will assume that T is a power of 2). In order to create

the formula, we use the same technique as in the Cook-Levin Theorem’s proof for

expressing the contents of each cell.

For one time step (t = 1), constructing the formula is easy. The formula

φc1,c2,t will be such as to express that either c1 = c2 or that c2 immediately follows

the configuration c1.

The first possibility is expressed by creating a Boolean formula stating that each of

the variables that represent c1 have the same value as to the variables that represent

c2.

The second case is expressed by following the technique of φtransit in the proof of

the Cook-Levin Theorem.

For any other time interval t > 1, we create our formula by using recursion.

21

An initial idea is the following:

φc1,c2,t = ∃κ1

(
φc1,κ1,

t
2
∧ φκ1,c2,

t
2

)

However, this idea cannot work, since the size of the sentence doubles in each recur-

sive step and thus becomes exponentially big. To reduce the resulting size, we use

the ∀ quantifier as well in order to have only one occurrence of the sentence, instead

of two as above. So, we have:

φc1,c2,t = ∃κ1∀(c3, c4) ∈ {(c1, κ1), (κ1, c2)}
(
φc3,c4, t2

)

Due to repeating the use of the subformula by changing the new variables c3, c4,

we do not get recursively a doubled formula. The size of the complete formula is

O(n2k), since in each recursive step a linear portion of the formula is added and we

have log(2O(nk)) = O(nk) steps. Hence, the size of the final sentence is polynomial

to the size of the input and the proof is complete.

Although the proofs presented so far share several common traits, these sim-

ilarities will become clearer as we continue to find them between all the proofs we

will present.

22

Chapter 4: 2-SAT is Complete for the class NL

4.1 Overview

After the work done in order to deeply understand the topics already men-

tioned in the previous chapters, a question had arisen. Could we use this seemingly

common method -or way of thinking about the problem- for proving the Complete-

ness of more variations of satisfiability problems for other Complexity Classes? If so,

how would the already existing proofs be useful to such tasks? In order to acquire

more insight on the whole topic and at the same time test and better understand the

method of reducing specific Machines to formulas, we attempted to come up with a

proof about the Completeness of the 2-CNF satisfiability problem for the class NL.

The result is all but new, since it is known for at least the last 15 years. However,

all the proofs found in the literature (see [5], [6], [3]) uses reductions from already

proven NL-Complete problems to 2-SAT. The proof that we came up with follows

the ”norm” as it reduces the decidability of a language in NL to the satisfiability of

a 2-CNF formula by encoding a T.M. to such a formula.

However, notice that our current reduction will have to be of logarithmic

space which is by far stricter a constraint than that of a polynomial time (or space)

reduction.

23

Also, an important Theorem that we will use in our proof is the Immerman-

Szelepcsényi Theorem, which states that NL is closed under complements (NL=co-

NL).

Theorem 4.1.1. For any function s(n) ≥ log n it holds that NSPACE(s(n)) =

co-NSPACE(s(n)). As a special case, when s(n) = log n, it holds that NL = co-NL.

Therefore if one proves that a problem is co-NL complete, then it is also NL-

complete, since the two classes are actually the same one.

4.2 A new Proof of Theorem

Let’s now prove that 2-SAT is NL-Complete.

Theorem 4.2.1. The 2-satisfiability problem (2-SAT) is Complete for the Com-

plexity Class NL.

Proof. First of all, we will prove that 2-SAT is in NL. For a given 2-CNF for-

mula f, we will prove that it’s unsatisfiability can be proven by a non-deterministic,

logarithmic-space T.M. and thus due to Theorem 4.1.1, the satisfiability of such a

formula can also be proven by such a machine.

Let f a 2-CNF formula that consists of |c| clauses. Let ν be the set of all positive

literals over f. Let’s define the following possible computation paths:

• First, non-deterministically, some xa ∈ ν is chosen and is written in the loga-

rithmic tape as the initial literal.

24

• In the second step, we choose non-deterministically a clause in which the ini-

tial literal participates. We choose the other literal of the clause and we write

the initial literal, the negation of the second literal and the step count (now

2, in general is of length O(n)) in the tape.

• Non-deterministically in every step i, we choose a clause in which the pre-

viously written in the tape literal is in and we write the initial literal, the

negation of the newly chosen literal and the step count in the tape. This is

always of length O(n).

• If in some step s < |c|+ 1, the tape contains |xa|¬xa|k|, then we set the step

count to 1 and we repeat the process considering as initial literal the negation

of xa. Now every time in the tape we first write |xa|¬xa| and then the new

negation of a literal and the step count.

• If in some step m < |c|+1 the tape looks like in Figure 4.1, then the procedure

is accepting for this computation path.

Figure 4.1: An example of a state of the writing logarithmic tape for which the
procedure will accept. Here m = |c| − 1.

25

Then, f is unsatisfiable if any of these computation paths is an accepting one.

This is because, if we find such a path, we have managed to find a variable xa

which has a circular relation with its negation in f. In exact, if we set xa to false,

then the computation path that we accepted, shows us the path of evaluation of

literals through which we will end up to have ¬xa to be also set to false. This is the

first part of our procedure. Therefore, xa cannot be set false and must be set true

for f to be satisfiable. In this case however, ¬xa is set to false. So, we follow the

path of evaluation of literals indicated by the second part of our procedure and we

end up to have xa set to false, which is a contradiction. So, for any evaluation of xa

f is unsatisfiable.

Reversely, due to the nature of this property, any unsatisfiable, 2-CNF formula

ought to have such a circular relation between a literal and its negation, otherwise,

it would be easily satisfiable by setting each literal to an appropriate value in a

linear fashion.

Thus, 2-SAT ∈ co-NL and so, 2-SAT ∈ NL.

Now we will prove that 2-SAT is co-NL-Hard.

Let B be a language in NL. Let B be decided by a non-deterministic T.M. of

logarithmic space, say MB.

Let’s assume w.l.o.g. that MB has a single accepting state, say qα (if it has

more than one we can easily adjust the machine to have exactly one).

26

We will transform the accepting run of MB given input w to an equivalent

instance of a 2-CNF sentence.

First of all, given input w, MB will have a specific configuration table for each

computation path, consisting of all possible configurations of the machine, while

working on that path. Every configuration will look like in Figure 4.2.

Figure 4.2: Any configuration of the machine will have the above form.

The first entry can be one of the machine’s states, therefore might be |Q|

different states. The second entry denotes where the input tape’s head lies and

since this tape contains w, then it can be in (n+1) different positions. The working

tape is by definition of length log(n) and contains symbols of the alphabet A. Due

to that, its head is in a position from 1 to O(log(n)). So, the set of all possible

configurations is of size:

|Q| × (n+ 1)× |Alog(n)| × O(log(n)) ≤ O(nk)

A successful computation of MB given input w, would begin with an initial

configuration C0 := (s, 0, ., ε), where s is the starting state of the machine. It would

accept if ending in a configuration Ci
accept of the form (qaccept, α, β, i) but instead of

keeping track of all accepting configurations, we can think of a virtual configuration

27

Caccept, which is a configuration immediately after every accepting configuration.

In order for the computation of w by MB to be successful, we should have a

specific set of configurations, each immediately preceding the previous one in a total

order, which begin from C0 and end with Caccept. In order for two configurations to

be consecutive (Ca is followed by Cb), the second must arrive from the first one via

following the rules of MB, (Ca →(MB ,w) Cb), or in the special case of Caccept, where

we assume that every accepting configuration is followed by Caccept.

We will model these requirements with a 2-CNF formula, which will be unsat-

isfiable if and only if MB accepts w.

Our formula, let fMB ,w will contain clauses of the following forms:

• First, a clause (X0), where X0 is a Boolean variable corresponding to the ini-

tial configuration C0.

• For each configuration Ca and for every configuration Cb successive to Ca we

will have a clause (¬Xa ∨Xb).

• For each accepting configuration Ci
accept we will have a clause

(¬X i
accept ∨Xaccept).

• Finally, we will add a clause (¬Xaccept).

28

Before we prove the equivalence of the initial problem to the unsatisfiability of

fMB ,w, let’s prove that our sentence can be produced in logarithmic space. In other

words, we will prove that there exists a deterministic, logarithmic-space T.M. that,

given as inputs the encoding of MB and w, it produces fMB ,w.

As we have already shown, the number of all possible configurations is polyno-

mial in the size of the input. This means that the number of pairs of configurations

is also polynomial in the size of the input. Thus, our T.M. can work as follows:

It will linearly produce each valid pair of consecutive configurations by producing

all valid words of size equal to the size of two configurations (which is logarithmic

to the size of the input, since each configuration is of logarithmic size) and checking

for each word if it actually ensembles two distinct and consecutive instances of MB

while working on input w. This can be achieved in polynomial time and logarithmic

space for each pair (by checking the rules of MB and whether the first configuration

can lead to the second) and thus -by reusing space- can be achieved in polynomial

time and logarithmic space for all pairs of configurations. Each configuration can

be attributed a specific variable and therefore, for each valid pair of configurations

Ca, Cb we produce a clause (¬Xa ∨Xb).

With a similar procedure we find all accepting configurations and produce

the clauses (¬X i
accept ∨ Xaccept). In the end we add the two distinct clauses (X0),

(¬Xaccept) and our formula is ready.

Now let’s prove the equivalence between 2-SAT and B.

29

Let w be accepted by MB. This means that there exists a sequence of configurations

of MB with given input w, that begins from C0, followed by C1. . . etc . . . followed by

Cn, followed by Ci
accept, followed by Caccept. Based on the way fMB ,w was produced,

our formula is going to contain a subformula of the form:

(X0)∧(¬X0∨X1)∧(¬X1∨. . .)∧. . .∧(¬Xn∨X i
accept)∧(¬X i

accept∨Xaccept)∧(¬Xaccept)

It is straightforward to verify that this part of fMB ,w is always unsatisfiable

and thus, fMB ,w is unsatisfiable in this case.

So, if w is accepted by MB, then fMB ,w is unsatisfiable.

Reversely, let w not be accepted byMB. This means that no accepting configurations

exist in the computation of MB with input w. Respectively, no clauses of the form

(¬X i
accept ∨Xaccept) are part of fMB ,w. Due to that, we can assign satisfying values

to the variables of fMB ,w as follows:

• Set X0 = 1 and Xaccept = 0 .

• For each clause, where the literal ¬X0 participates in, set the other literal (by

definition of the formula, positive) to 1.

• Repeat for each such variable the same procedure, until no clause is left un-

satisfied.

(This can be systematically done by following each computation path of MB

30

with input w and setting the respective variables to 1)

This evaluation satisfies the formula, which means that if w is not accepted

by MB, then fMB ,w is satisfiable and the proof is complete.

Notice that, as we previously stated, we have proven that 2-SAT is NL-

Complete. However, due to the Immerman-Szelepcsényi Theorem, we know that

NL is closed under complements. We established that 2-SAT is in NL and therefore,

2-SAT is NL-Complete means that 2-SAT is NL-Complete.

Now we are ready to continue by comparing the several proofs we already

presented.

31

Chapter 5: Observations, Relevant Results and Further Work

5.1 Comparison of the several proofs

This is one of the most interesting and difficult parts of this work. We will

attempt to present several similarities and differences between the proof techniques

and make some interesting observations in a way as clear as possible.

5.1.1 General observations regarding the proofs

First of all, let us present a interesting detail in Trakhtenbrot’s Theorem. If a

sentence φ of FO does not have a finite model (is not finitely satisfiable), then one

of two things occurs.

Either φ does not have a finite model (e.g. φ = (v∧¬v)), or φ has an infinite model.

Notice that, the sentence we created in the proof is of the first case. This occurs

due to the addition of the halting clause:

∃p∃t
∨

q∈Qa

⋃
Qr

Hq(p, t)

32

If we did not include this clause, then our sentence would be of the second case.

This is a rather interesting observation because it seems like this small detail some-

what captures a logical difference between decidability and recognizability for a T.M.

Specifically, It might be useful to research this idea further in future work.

Next, let’s focus at the comparison between the proofs.

5.1.2 Comparing the proofs of theorems 2.2.1 and 3.2.1

Another useful observation lies between the proofs of Trakhtenbrot’s and Cook-

Levin’s Theorems. As we can observe by just reading the two proofs, the one for

Theorem 3.2.1 follows the same steps as that of Theorem 2.2.1. However, since it has

to create a Boolean formula and not an FO sentence, the proof cannot use the more

expressive tools of FO, such as relations and variables that take values over a set.

To overcome that problem in a comely manner in this proof, instead of leaving the

position on the tape and the time-step to be considered variables for FO relations,

the tableau is created and appropriate Boolean variables are defined for each tableau

position and each possible tape symbol. For example, a relation instance T0(p, t)

from Theorem 2.2.1, would be encoded as a variable cp,t,0 in Cook-Levin’s proof.

Similarly, we would encode other relations used in Theorem 2.2.1 (e.g. Hqi(p, t) will

be encoded using a respective variable cp,t,qi).

Therefore, it seems like Theorem 3.2.1 uses exactly the same idea as Theorem 2.2.1

and simply manages to express the setting of an accepting path of configurations

33

using only propositional logic and polynomially many Boolean variables.

5.1.3 Comparing the proofs of theorems 3.2.1 and 4.2.1

Let’s present a comparison between the proofs regarding SAT and 2-SAT. At

first, it seems rather counter-intuitive that both SAT and 2-SAT can express the

encoding of T.M.s in respect to the classes for which each problem is Complete.

Since, in order to reduce the problem of acceptance from a non-deterministic polynomial-

time T.M. in a Boolean formula without specific structure we need a polynomial-

time reduction, it seems like it ought to be impossible to do the same but with a

logarithmic-space reduction. What this observation fails to include to its line of

reasoning though, is that the T.M.s we are in each case required to encode, differ.

In fact, as a non-deterministic T.M. deciding a Language in NP, requires polyno-

mial time to compute any computation branch, similarly, a non-deterministic T.M.

deciding a Language in NL, requires logarithmic space.

So, while the proof of Cook-Levin manages to encode an accepting path of configu-

rations with a detailed logical representation of the various configurations involved,

our proof uses a more high-level approach, where each configuration in fact corre-

sponds to a Boolean variable and the only relations our formula encodes are those of

a configuration being the initial one, of a configuration being an accepting one and

of a pair of configurations consisting of configurations where the first is immediately

followed by the second one by complying to the rules of the transition relation of

34

the machine.

Even though this approach is less detailed, it suffices for the class of problems it

refers to.

5.1.4 A fitting cross-observation

In Theorem 2.2.1, we have any T.M. which, depending on whether it halts on

empty input or not, can be reduced to an FO sentence, which is finitely satisfiable

or not. If we tried to apply the idea of using a tableau in Theorem 2.2.1, in several

cases, the tableau would be infinite, so the produced sentence, would not have a

finite model.

Similarly, the idea of encoding the acceptance of a word from a T.M. with the

satisfiability of a Boolean formula, if always implemented in the same way, would

lead to wrong results. For example, if we use the same proof from SAT for 2-SAT, the

resulting formula could have never be produced from a logarithmic-space reduction.

Or, if we used the exact same idea of SAT for TQBF, we would end up with a

formula of exponential size.

This means that even though the same idea lies behind every one of the proofs,

in order to be implemented correctly, one has to get a good understanding of the

actual complexity bound of the T.M. participating in the proof. This is actually

a very intriguing notion, since it means that just by following and understanding

these proofs, we enhance our intuition regarding the respective complexity classes.

35

5.2 Relevant Results

We will now present briefly some other, relevant and important results.

First of all, Fagin in [1] proved that the Existential Second Order logic(∃SO)

captures NP. We say that a logic L captures a complexity class C if:

1. The data complexity of L is C. This means that for every L-sentence Φ,

testing for any finite structure U if it models Φ is a problem in C.

2. For every property P of finite structures that can be tested with complexity

C, there exists an L-sentence ΦP such that for any finite structure U , it is true

that U models ΦP if and only if U has the property P .

Fagin’s Theorem basically explains that exactly every property that requires

a non-deterministic, polynomial-time T.M. in order to be computed, can also be

expressed as a sentence of ∃SO. This result, has set the foundations for Descriptive

Complexity, a field that studies Complexity classes via the expressive power of logic

required in order to express properties that belong in each class.

The other two results that we will mention are both proven by use of the Reach-

ability method, which is in general closely related to the classes of non-deterministic

space. For more regarding this method and for studying the proofs of those two

results, one can read Chapter 7 of [5].

The first result is Savitch’s Theorem, which states that for any proper com-

plexity function f(n) ≥ log(n), NSPACE(f(n)) ⊆ SPACE(f 2(n)).

This result directly implies that PSPACE= NPSPACE. It also makes it clear that

36

non-determinism in respect of space resources is less powerful than it is in respect

of time.

Another theorem that supports this idea, is the Immerman-Szelepcsényi Theorem,

which states that for any proper complexity function f(n) ≥ log(n), NSPACE(f(n)) =

coNSPACE(f(n)).

Again, an immediate result from the Immerman-Szelepcsényi Theorem, is that NL=

coNL, a result that we used for our proof in Chapter 4.2.

Of course, there exist many more exciting results regarding those topics but

we will not refer to any more, since we haven’t studied it as extensively.

5.3 Future Work

Many interesting ideas have come while working on the parts of this Thesis. An

important next step would be to try and better understand whether this ”General

SAT Idea” we presented can actually become a more exact approach, or even an

algorithmic one for finding which Boolean satisfiability problem is complete for any

complexity class. In order to do so, it would be useful to gather more insight in

those methods, perhaps by re-proving some other similar results. A very appealing

such case, would be to give a new proof that Horn-Sat is P-complete using the

ideas presented in this work. Moreover, a lot of exciting work lies in the fields

of Descriptive Complexity and Finite Model Theory. It is important to strongly

understand the proof of Fagin’s Theorem and compare it with the proofs we already

saw. Due to the previous work done for my Bachelor’s Thesis, it also seems only

37

right to try and question which the relationship is between several games of logic

and important complexity classes.

38

Bibliography

[1] Ronald Fagin. Contributions to the model theory of finite structures. University
of California, Berkeley, 1973.

[2] Herbert B. Enderton. A Mathematical Introduction to Logic. Academic Press,
2001.

[3] Michael Sipser et al. Introduction to the Theory of Computation, volume 2.
Thomson Course Technology Boston, 2006.

[4] Leonid Libkin. Elements of finite model theory. Springer Science & Business
Media, 2013.

[5] Christos H Papadimitriou. Computational complexity. John Wiley and Sons
Ltd., 2003.

[6] Neil Immerman. Descriptive complexity. Springer Science & Business Media,
2012.

39

	Table of Contents
	List of Abbreviations
	Basic Definitions
	Introduction
	Logic
	Complexity Theory
	Outline of the Thesis
	Template

	Trakhtenbrot's Theorem
	Overview
	Proof of Theorem

	Satisfiability problems Complete for the Classes NP and PSPACE
	Overview
	Cook-Levin Theorem
	TQBF is PSPACE-Complete

	2-SAT is Complete for the class NL
	Overview
	A new Proof of Theorem

	Observations, Relevant Results and Further Work
	Comparison of the several proofs
	General observations regarding the proofs
	Comparing the proofs of theorems 2.2.1 and 3.2.1
	Comparing the proofs of theorems 3.2.1 and 4.2.1
	A fitting cross-observation

	Relevant Results
	Future Work

	Bibliography

